Laplace Transforms in Solving ODEs
A powerful tool for solving differential equations and analyzing linear systems
1. Definition of Laplace Transform
The Laplace transform converts a function of time \( f(t) \) into a function of complex frequency \( F(s) \):
The transform exists if the integral converges for some values of \( s \).
2. Time Domain to Frequency Domain Examples
Example 1: Exponential Function
Find \( \mathcal{L}\{e^{at}\} \):
For \( \text{Re}(s) > \text{Re}(a) \).
Example 2: Sine Function
Find \( \mathcal{L}\{\sin(\omega t)\} \):
Common Laplace Transforms
\( \mathcal{L}\{1\} = \frac{1}{s} \)
\( \mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \)
\( \mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} \)
\( \mathcal{L}\{t^n e^{at}\} = \frac{n!}{(s-a)^{n+1}} \)
3. Inverse Laplace Transform
The inverse Laplace transform converts back from frequency domain to time domain:
Example 1: Rational Function
Find \( \mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\} \):
Example 2: Quadratic Denominator
Find \( \mathcal{L}^{-1}\left\{\frac{s}{s^2 + 4s + 13}\right\} \):
4. Solving Initial Value Problems (IVP)
Steps to solve an IVP using Laplace transforms:
- Take the Laplace transform of both sides of the ODE
- Solve for \( Y(s) \) (the transform of the solution)
- Apply the inverse transform to find \( y(t) \)
Example: Second Order ODE
Solve \( y'' + 3y' + 2y = 0 \) with \( y(0) = 1 \), \( y'(0) = 0 \):
1. Transform the equation:
\[ s^2Y(s) - sy(0) - y'(0) + 3[sY(s) - y(0)] + 2Y(s) = 0 \] \[ (s^2 + 3s + 2)Y(s) = s + 3 \]2. Solve for \( Y(s) \):
\[ Y(s) = \frac{s + 3}{s^2 + 3s + 2} = \frac{s + 3}{(s + 1)(s + 2)} = \frac{2}{s + 1} - \frac{1}{s + 2} \]3. Inverse transform:
\[ y(t) = 2e^{-t} - e^{-2t} \]5. Unit Step Function and Piecewise Functions
The unit step function (Heaviside function) is defined as:
We can express piecewise functions using step functions:
Example: Piecewise to Step Function
Express \( f(t) = \begin{cases} t & \text{if } 0 \leq t < 2 \\ 2 & \text{if } t \geq 2 \end{cases} \) using step functions:
Laplace transform of shifted functions:
Example: Transform of Step Function
Find \( \mathcal{L}\{u(t - 3)(t - 3)^2\} \):
6. Solving IVP with Piecewise Forcing Function
Example: ODE with Piecewise Forcing
Solve \( y'' + y = f(t) \), \( y(0) = 0 \), \( y'(0) = 0 \) where:
\( f(t) = \begin{cases} 1 & \text{if } 0 \leq t < \pi \\ 0 & \text{if } t \geq \pi \end{cases} \)
1. Express \( f(t) \) using step functions:
\[ f(t) = 1 - u(t - \pi) \]2. Take Laplace transform:
\[ \mathcal{L}\{f(t)\} = \frac{1}{s} - \frac{e^{-\pi s}}{s} \] \[ (s^2 + 1)Y(s) = \frac{1}{s} - \frac{e^{-\pi s}}{s} \] \[ Y(s) = \frac{1}{s(s^2 + 1)} - \frac{e^{-\pi s}}{s(s^2 + 1)} \]3. Partial fractions for first term:
\[ \frac{1}{s(s^2 + 1)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 1} = \frac{1}{s} - \frac{s}{s^2 + 1} \]4. Inverse transform:
\[ y(t) = (1 - \cos t) - u(t - \pi)(1 - \cos(t - \pi)) \] \[ y(t) = \begin{cases} 1 - \cos t & \text{if } 0 \leq t < \pi \\ -\cos t - (1 - (-\cos t)) = -1 & \text{if } t \geq \pi \end{cases} \]